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NUMERICAL AND ASYMPTOTIC SOLUTION OF THE EQUATIONS

OF PROPAGATION OF HYDROELASTIC VIBRATIONS IN A CURVED PIPE

UDC 532.595: 519.633.6V. A. Rukavishnikov and O. P. Tkachenko

A mathematical model for propagation of hydroelastic waves in a pipe is developed using the
equations of motion of a shell and a fluid. A method for deriving two-dimensional equations
is proposed, and asymptotic formulas for solutions of these equations are obtained. A model
problem is solved numerically, and the results are compared with data obtained by others. The
results obtained make it possible to calculate the propagation of pressure waves for an arbitrary
(within the framework of the assumptions made) shape of the axial line of the pipe and can be
used in designing systems for diagnostics of pipeline performance.

The motion of a fluid in pipes is a classical problem of mechanics. Recently, phenomena associated
with instability of a long elastic pipe with a fluid flow have attracted a considerable amount of interest.
Consequences of the instability can be displacement of an underground pipe from its initial position and
rising of a segment of an underwater pipeline to the surface.

Distortion of the pipeline profile must be detected as soon as possible. This can be done by analyzing
a pressure pulse (hydraulic jump) or an acoustic wave that passed through the fluid flow. For passage of a
wave through the pipeline, the time dependence of the pressure is determined by the curvature of the pipeline
axis.

Hydroelastic vibrations of a curved pipeline occur under the action of the elastic properties of the pipe
wall, the pressure and friction in the fluid flow, and the resistance of the ambient medium. The propagation
of the vibrations allowing for these factors has not been adequately studied.

One-dimensional mathematical models of unsteady fluid flow in pipes were considered in [1, 2]. An
analysis of the theories of a hydraulic jump is given in [3]. These models, however, do not allow us to study
the effect of the profile bend on pressure-wave propagation.

Vol’mir [4] and other researchers studied the interaction of cylindrical shells with fluid flows using the
equations of general hydroelasticity theory. However, this approach is efficient only for pipes of medium
length. There are also models for flow of a viscous incompressible fluid in curved pipes that were developed
for investigation of blood flows (see, e.g., [5, 6]). The dynamics of these systems is considerably different from
the pipeline dynamics, and the results obtained in these papers are inapplicable to the problem considered
herein.

A hydraulic jump propagating through a pipeline moving according to a specified law was considered by
Yaskelyain [7], who developed a one-dimensional mathematical model and performed numerical calculations
using the method of characteristics. A one-dimensional mathematical model of a hydraulic jump in a curved
pipeline was proposed by Ovchinnikov [8] (see also the review of literature in [9]).
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Fig. 1

All the above-mentioned mathematical models are inapplicable for the analysis of the propagation of
pressure oscillations through a curved underground pipeline because the motion of a pressure wave through
a pipeline must be determined taking into account phenomena with a characteristic length scale of the order
of the pipe radius. It is also necessary to take into account the interaction of the pipe wall with both the
ambient medium and the fluid flow.

In the present paper, we consider the propagation of a pressure wave in a fluid flow in a curved elastic
pipeline taking into account the effect of the ambient medium. This problem is related to the problem of
diagnostics of distortion of an underground pipeline profile under the action of internal fluid flow. If a pipeline
is probed by acoustic waves, the pressure at each point of the pipeline as a function of time will depend on
the curvature of the axial line. The aim of this paper is to construct and test a mathematical model that
would allow us to study this dependence.

1. Physical Formulation of the Problem. Let a fluid flow uniformly inside a curved underground
pipeline whose axis is a two-dimensional curve Γ = {(x, y): x = x(s), y = y(s); 0 6 s 6 L}. At the initial
point of the pipeline s = 0, a periodic force is applied to the fluid flow and generates pressure oscillations in
the flow. The problem is to study the dynamics of the system.

In constructing a mathematical model, we assume that the fluid motion can be linearized in the
neighborhood of the steady flow, the effect of the ground can be taken into account via boundary conditions,
and the following parameters are small: α = R0/l (R0 is the pipe radius and l is the minimum wavelength
of the signal), ε = R0/min |ρ0| (ρ0 is the radius of curvature of the pipeline axis), and h∗ = h/R0 (h is the
thickness of the pipe wall). The motion of the wall is described by linear shell theory. Friction in the fluid in
oscillatory processes is ignored.

We introduce the following curvilinear orthogonal coordinates: s is the distance along the pipe axis and
θ and R are the angle and radius of polar coordinates in the cross section at point s (Fig. 1). The Cartesian
coordinates of the point are given by

X = x(s) +
dy(s)
ds

R sin θ, Y = y(s)− dx(s)
ds

R sin θ, Z = R cos θ. (1)

Similar coordinates were used in [10], where the pipe had the shape of a torus and the angle ϕ was taken
as the coordinate s. Following [11], from (1) we can determine the components of the metric tensor, the
Christoffel symbols, and the Lamé coefficients for the orthogonal coordinate system constructed. The first
Lamé coefficient can be written as

√
g11 = 1 +

R

ρ0(s)
sin θ.

Simultaneous motion of a fluid and a pipe was considered in [12], where the problem had only been
formulated. In the present paper, we refine the method of linearization of the equations of motion for a fluid
and focus on the study of a three-dimensional mathematical model.
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2. Three-Dimensional Initial-Boundary-Value Problem of Motion of the System. The
motion of a pipeline is governed by the equations of an elastic body [11]

ρta
k = ∇ipki, (2)

where ρt is the density of the pipe material, ak are the acceleration components, pki are the stress-tensor
components, and ∇i is the covariant derivative.

It is assumed that the normal fluid pressure force and the force of entrainment of the wall by the steady
flow act on the internal surface of the pipe, and the external surface of the pipe is acted upon by the normal
ambient pressure, the force of elastic resistance of the ambient medium to the radial displacement of the wall,
and the friction force, proportional to the velocity of tangential motion of the wall. Then, for the density of
the surface forces, we obtain

P n

∣∣∣
R=R0−h/2

= Φ(vs0) · es + p · eR,
(3)

P n

∣∣∣
R=R0+h/2

= −kpe
(∂ws
∂t

es +
∂wθ
∂t

eθ

)
− (pe + æwR)eR.

Here es, eθ, and eR are the unit basis vectors, ws, wθ, and wR are the physical components of the displacement,
k and æ are the friction coefficient and the elasticity of the ambient medium, p and pe are the pressures of
the fluid and the medium, and Φ(vs0) is a function that describes the force of friction between the flow and
the wall.

Now, using (2) and (3) and passing to the equations of technical moment shell [13], we obtain the
boundary-value problem

α

A

∂I ′

∂ζ
− (1− ν)

∂χ′

∂θ
+

1− ν
A

(
εfu′ sin θ − α ∂w

′

∂ζ

)
= −1− ν2

Eh∗
Fs,

∂I ′

∂θ
+ (1− ν)

α

A

∂χ′

∂ζ
+ (1− ν)

εf

A
sin θ

(
v′ − ∂w′

∂θ

)
= −1− ν2

Eh∗
Fθ,

−
(

1 +
εf

A
sin θ

)
I ′ +

1− ν
A

[
2εfw′ sin θ + α

∂u′

∂ζ
+ εf

∂

∂θ
(v′ sin θ)

]

− (h∗)2

12
∇̃2w′ − (h∗)2

12
∇̃2∇̃2w′ = −1− ν2

Eh∗
FR,

I ′ =
1
A

(
α
∂u′

∂ζ
+ εfv′ cos θ

)
+
∂v′

∂θ
+
(

1 +
R0 sin θ
ρ0(ζ)A

)
w′,

χ′ =
1

2A

(
α
∂v′

∂ζ
− εfu′ cos θ

)
− 1

2
∂u′

∂θ
, ∇̃2w′ =

1
A

[
α2 ∂

∂ζ

( 1
A

∂w′

∂ζ

)
+

∂

∂θ

(
A
∂w′

∂θ

)]
,

1
h∗
Fs = −ρtR2

0ω
2 ∂

2u′

∂τ2
+

(h∗)2

12

(
1 + 2

εf

A
sin θ

)α
A
ρtR

2
0ω

2 ∂2

∂τ2

∂w′

∂ζ

+
1
h∗

[
Φt(vs0)− kpeωR0

∂

∂τ

(
u′ − h∗α

2A
∂w′

∂ζ

)]
, (4)

1
h∗
Fθ = −ρtR2

0ω
2 ∂

2v′

∂τ2
+

(h∗)2

12

(
2 +

εf

A
sin θ

)
ρtR

2
0ω

2 ∂2

∂τ2

∂w′

∂θ
− 1
h∗
kpeR0

∂

∂τ

(
v′ − h∗

2
∂w′

∂θ

)
,
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1
h∗
FR = −ρtR2

0ω
2 ∂

2w′

∂τ2
+

(h∗)2

12
ρtR

2
0ω

2 ∂2

∂τ2

[
−
(

2 +
εf

A
sin θ

)∂v′
∂θ

− α

A

(
1 + 2

εf

A
sin θ

)∂u′
∂ζ

+
εf

A
cos θ

(
∂w′

∂θ
− 3v′

)
− α

A

εf ′

A2
sin θ

(
2u′ + α

∂w′

∂ζ

)
+
∂2w′

∂θ2

+
α2

A2

∂2w′

∂ζ2

]
+

1
h∗

(p− pe − æR0w
′)− 1

2

{εf
A
kpeωR0 cos θ

∂

∂τ

(
v′ − h∗

2
∂w′

∂θ

)

+ kωR0
∂

∂θ

[
pe

∂

∂τ

(
v′ − h∗

2
∂w′

∂θ

)]
+
α

A
kpeωR0

∂2

∂τ ∂ζ

(
u′ − h∗α

2A
∂w′

∂ζ

)}
,

A = 1 +
R0

ρ0(s)
sin θ, f =

min0<ζ<L |ρ0(ζ)|
ρ0(ζ)

, w′ = v′ = u′ = 0,
∂w′

∂ζ
= 0 for ζ = 0, L.

Here u′, v′, and w′ are the component of the displacement of the middle surface of the pipe wall normalized
by R0, τ = ωt and ζ = s/l are the dimensionless time and longitudinal coordinate, ν and E are Poisson’s ratio
and Young’s modulus for the pipe, ρ0(ζ) is the radius of curvature of the axis of the pipeline, and Fs, Fθ, and
FR are the densities of the forces acting in the corresponding directions. System (4) must be supplemented
with boundary conditions. We obtain them by solving the equations of equilibrium of the pipeline with steady
fluid flow that are obtained from (4) if the time derivatives and unsteady characteristics of the fluid are set
equal to zero.

The motion of the fluid is described by the Euler equations [11] with a friction term on the right side:

ρ
(∂v
t

+ (v,∇)v
)

= −grad p−Φ(vs0),
∂ρ

∂t
+ div (ρv) = 0.

Following [12], we introduce the representations of solutions

v = v0 + v1, ρ = ρf + ρ1, p = p0 + p1,

where v0 and p0 is the solution of the equations

(v0,∇)v0 = − 1
ρf

grad p0 −
1
ρf

Φ(vs0), divv0 = 0, ρf = const,

Omitting terms that are nonlinear in v1, ρ1, and p1 and taking into account the equation of state for the
density perturbations ρ1 = p1/c

2
f , we obtain the following unsteady linearized equations of motion of the

fluid:

ρf

(∂v1

∂t
+ (v0,∇)v1 +

[
(v1,∇)v0

]
c

)
= −grad p1,

1
c2
f

[∂p1

∂t
+ div (p1v0)

]
+ div (ρfv1) = 0,

where cf is the speed of sound in the fluid. We assume that v0 depends weakly on the coordinate, and,
therefore, only the part (v1,∇)v0 of the term [(v1,∇)v0]c, which does not contain partial derivatives, remains
in the equations.

We introduce the dimensionless functions

v′ =
v1

ωl
, v′0 =

v0

ωl
, p′ =

p1

pa
, p′0 =

p0

pa

(pa is the atmospheric pressure) and denote their components as

v′ = (vs, vθ, vr), v′0 = (vs0, vθ0, vr0).
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Then, a2 = pa/(ρfω2l2) is a dimensionless parameter. For a steady motion, we obtain

vs0√
g11

∂vs0
∂ζ

+
vθ0
αr

∂vs0
∂θ

+
vr0
α

∂vs0
∂r

+
ε

α

f(ζ)
√
g11

vs0(vθ0 cos θ + vr0 sin θ) = − a2

√
g11

∂p′0
∂ζ
− l

ρf

∣∣∣Φ(vs0)
∣∣∣,

vs0√
g11

∂vθ0
∂ζ

+
vθ0
αr

∂vθ0
∂θ

+
vr0
α

∂vθ0
∂r
− ε

α

f(ζ)
√
g11

v2
s0 cos θ +

vr0vθ0
αr

= − a
2

αr

∂p′0
∂θ

,

vs0√
g11

∂vr0
∂ζ

+
vθ0
αr

∂vr0
∂θ

+
vr0
α

∂vr0
∂r
−
v2
θ0

αr
− ε

α

f(ζ)
√
g11

v2
s0 sin θ = −a

2

α

∂p′0
∂r

, (5)

1
√
g11

∂vs0
∂ζ

+
1
αr

∂vθ0
∂θ

+
1
α

∂vr0
∂r

+
vr0
αr

+
ε

α

f(ζ)
√
g11

(vθ0 cos θ + vr0 sin θ) = 0,

vs0(0, θ, r) = v0, vr0(ζ, θ, 1) = 0, p′0(L, θ, r) = 1.

For unsteady motion, we have

∂vs
∂τ

+
vs0√
g11

∂vs
∂ζ

+
vθ0
αr

∂vs
∂θ

+
vr0
α

∂vs
∂r

+ vs0
εf(ζ)
α
√
g11

(vθ cos θ + vr sin θ)

+ vs
εf(ζ)
α
√
g11

(vθ0 cos θ + vr0 sin θ) = − a2

√
g11

∂p′

∂ζ
,

∂vθ
∂τ

+
vs0√
g11

∂vθ
∂ζ

+
vθ0
αr

∂vθ
∂θ

+
vr0
α

∂vθ
∂r
− 2vs0vs

εf(ζ)
α
√
g11

cos θ +
vθvr0
αr

+
vθ0vr
αr

= − a
2

αr

∂p′

∂θ
,

∂vr
∂τ

+
vs0√
g11

∂vr
∂ζ

+
vθ0
αr

∂vr
∂θ

+
vr0
α

∂vr
∂r
− 2vs0vs

εf(ζ)
α
√
g11

sin θ − vθ0vθ
αr

= −a
2

α

∂p′

∂r
, (6)

a2
(∂p′
∂τ

+
vs0√
g11

∂p′

∂ζ
+
vθ0
αr

∂p′

∂θ
+
vr0
α

∂p′

∂r

)
+

1
√
g11

∂vs
∂ζ

+
1
αr

∂vθ
∂θ

+
1
α

∂vr
∂r

+
vr
αr

+
εf(ζ)
α
√
g11

(vθ cos θ + vr sin θ) = 0,

p′(0, θ, r, τ) = F0(τ), p(L, θ, r, τ) = 0, vr(ζ, θ, 1, τ) = α
∂w′

∂τ
(ζ, θ, τ).

Here the equations for steady motion are supplemented with the condition of no normal flow through the
wall. In addition, we specify constant velocity at the pipeline entrance and impose the condition of pressure
equalization at the end of the pipeline. For unsteady motion, we specify the pressure at the entrance and
impose the condition of no normal flow through the wall and the condition of pressure equalization at the
end of the pipeline.

The resistance to a steady flow is prescribed in the form [2, 14]∣∣∣Φ(vs0)
∣∣∣ = βv2

0, β =
λρf
4R0

, λ =

{
64/Re, Re < 2000,

0.0032 + 0.221/Re0.237, Re > 2000,
Re =

2v0R0

µ
,

where µ is the kinematic viscosity. At the initial time, the values of the unknown functions in (6) are taken
to be zero.

Thus, we have formulated the initial-boundary-value problem (4)–(6) of simultaneous motion of the
pipeline wall and the fluid.
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3. Reduction of the Problem to a Two-Dimensional Problem and Obtaining a Steady
Solution. To eliminate the angular variable θ, we use the expansion obtained in [12]. For the pipeline, it is
given by

u′ = u(0)(ζ, τ) + εu(1)(ζ, τ) sin θ + εu(2)(ζ, τ) cos θ +O(ε2),

v′ = v(0)(ζ, τ) + εv(1)(ζ, τ) sin θ + εv(2)(ζ, τ) cos θ +O(ε2), (7)

w′ = w(0)(ζ, τ) + εw(1)(ζ, τ) sin θ + εw(2)(ζ, τ) cos θ +O(ε2).

For the fluid (k = s, θ, r), it has the form

vk(τ, ζ, θ, r) = v
(0)
k (τ, ζ, r) + εv

(1)
k (τ, ζ, r) sin θ + εv

(2)
k (τ, ζ, r) cos θ +O(ε2),

(8)
p′(τ, ζ, θ, r) = p(0)(τ, ζ, r) + εp(1)(τ, ζ, r) sin θ + εp(2)(τ, ζ, r) cos θ +O(ε2).

This representation is due to the fact that, after expanding the solution of problem (4) in a power series in the
small parameter ε and then in a Fourier series in θ (since the periodicity in θ is obvious), all Fourier coefficients
(except for the first) are equal to zero in a zeroth approximation because they are solutions of boundary-
value problems with zero right sides and homogeneous boundary conditions. In a first approximation for ε,
all Fourier coefficients are equal to zero, except for the coefficients at sin θ, cos θ, etc.

For steady motion of the fluid in a zeroth approximation for ε, we obtain

v
(0)
s0 = v0, v

(0)
θ0 = v

(0)
r0 = 0, p

(0)
0 = 1 +

lβ

ρfa2
v2

0(L− ζ). (9)

As a first approximation (expanding the unknown functions in an asymptotic series in α in a long-wave
approximation), we obtain

p
(1)
0 = r

f(ζ)
a2

v2
0 + α2 r

8
(3− r2)

v2
0

a2

(∂2f

∂ζ2
+
lβ

ρf

∂f

∂ζ

)
,

v
(1)
s0 = −rfv0 − α2 rv0

8
(3− r2)

(∂2f

∂ζ2
+
lβ

ρf

∂f

∂ζ

)
− r lβ

ρf
v0

ζ∫
0

f dζ, (10)

v
(1)
r0 = −3

8
αv0(1− r2)

(∂f
∂ζ

+
lβ

ρf
f
)
, v

(2)
θ0 = −αv0

8
(3− r2)

(∂f
∂ζ

+
lβ

ρf
f
)
.

In the leading order, for r = 1 the quantity p(1)
0 is equal to

p
(1)
0 ≈ f(ζ)

a2
v2

0. (11)

From the physical viewpoint, this quantity corresponds to the pressure difference between θ1 = π/2 and
θ2 = −π/2, i.e., at the distance equal to the diameter of the pipeline (the so-called effect of centrifuge, see,
e.g., [6]).

Substitution of (7) into the boundary-value problem (4) yields one-dimensional equations for the expan-
sion coefficients. Setting the time derivatives in these equations equal to zero, we obtain the boundary-value
problem for the equilibrium of the pipeline, whose solution is the initial condition for the one-dimensional,
initial-boundary-value problem for the expansion coefficients.

In a zeroth approximation for ε, the equilibrium problem can be solved exactly:

u
(0)
0 = b1 + b2ζ −

ν

α

∫
w̄ dζ + cζ2, w̄ = w

(0)
0 − d− gζ,

w
(0)
0 =

[
A1 cos

(
δ2
ζ

α

)
+A2 sin

(
δ2
ζ

α

)]
exp

(
δ1
ζ

α

)
+
[
A3 cos

(
δ2
ζ

α

)
+A4 sin

(
δ2
ζ

α

)]
exp

(
− δ1

ζ

α

)
− ανb2

1 +Kg − ν2
+ d+ gζ,
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where Kg = R0æ/(Eh∗) is the elasticity of the ground, the coefficients c, d, g, δ1, and δ2 are obtained from
the right sides, and b1, b2, A1, A2, A3, and A4 are obtained from the boundary conditions.

To automate the calculations, we wrote a code using the programming language Reduce. We do not
present the analytical expressions obtained because they are too cumbersome.

For boundary-value problems describing the equilibrium of the pipeline in a first approximation for ε,
we constructed finite-difference schemes by an integrointerpolation method. We wrote a computer program
that solves the system of algebraic equations obtained using the method of minimum residuals.

Thus, the steady flow of the fluid and the equilibrium position of the pipeline are determined with
accuracy up to quantities of the order of εα2.

4. Solution of the Unsteady Problem. Substituting (7) and (8) into Eqs. (4) and (6) and
equating the coefficients at ε0, ε sin θ, and ε cos θ on the left and right sides of the equations and the boundary
conditions, we obtain a two-dimensional, initial-boundary-value problem for the coefficients of expansions (7)
and (8). Expanding the solutions of the obtained fluid equations in a power series in the small parameter α,
in the long-wave approximation we obtain

∂vs0
∂τ

+ v0
∂vs0
∂ζ

= −a2 ∂p0

∂ζ
, a2

(∂p0

∂τ
+ v0

∂p0

∂ζ

)
+
∂vs0
∂ζ

+ 2
∂w(0)

∂τ
= 0,

p0

∣∣∣
ζ=0

= F0(τ), p0

∣∣∣
ζ=L

= 0, vs0

∣∣∣
τ=0

= p0

∣∣∣
τ=0

= 0, (12)

v(0)
s = vs0 + α2 r

2

2
∂2w(0)

∂τ ∂ζ
, v(0)

r = αr
∂w(0)

∂τ
, p(0) = p0 −

α2r2

2a2

∂

∂τ

(∂w(0)

∂τ
+ v0

∂w(0)

∂ζ

)
.

As a first approximation for ε, using similar expansions in α, we obtain the asymptotic formulas

p(1) =
2rv0

a2
fvs0 + α2r

v0

a2

[(
5
2
f +

lβ

ρf

ζ∫
0

f dζ

)
∂2w(0)

∂τ ∂ζ

− 1
v0

∂

∂τ

(∂w(1)

∂τ
+ v0

∂w(1)

∂ζ

)
+

1
8

(r2 − 3)F (τ, ζ)
]
,

p(2) = −α
2r

a2

∂

∂τ

(∂w(2)

∂τ
+ v0

∂w(2)

∂ζ

)
,

(13)

F (τ, ζ) =
( ∂
∂τ

+ v0
∂

∂ζ

)2
(fvs0)− ∂2(fvs0)

∂ζ2
+

∂

∂ζ

[(
2f +

lβ

ρf

ζ∫
0

fdζ
)∂vs0
∂ζ

]

+
a2

v0

∂

∂ζ

(
f
∂p0

∂ζ

)
+ 3
(

2f +
lβ

ρf

ζ∫
0

f dζ
)∂2w(0)

∂τ ∂ζ
−
(

2f ′ +
lβ

ρf
f
)∂w(0)

∂τ

−
( ∂
∂τ

+ v0
∂

∂ζ

)[
a2
(

2f +
lβ

ρf

ζ∫
0

f dζ
)∂p0

∂ζ
+
f

v0

(∂vs0
∂ζ
− ∂w(0)

∂τ

)]
.

The functions w(0), w(1), and w(2) in (12) and (13) are components of expansion (7) for the radial
displacement of the pipe wall. The boundary-value problem for w(0) is solved simultaneously with (12) since
it contains p(0). The corresponding quantities w(1) and w(2) appearing in the equations for p(1) and p(2) can
be eliminated using Eqs. (13). Therefore, they are determined independently.
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Fig. 2 Fig. 3

The differential operators in the equations for w(0), w(1), and w(2) coincide with the operator of Eqs.
(6)–(8) in [12], and the right side differs only in the term corresponding to the force Φt(vs0). Here we do not
present these equations because they are too cumbersome.

The initial-boundary-value problem for the zeroth approximation for ε was solved numerically. We
employed an explicit three-layer finite-difference scheme for calculation of u(0) and w(0) and the method of
characteristics for calculation of vs0 and p0. For the latter, we chose the invariants

I1 = vs0 + a2p0, I2 = vs0 − a2p0,

which reduce system (12) to canonical form.
For model calculations, we took parameters that correspond to a water flow in a steel pipe with an

inner radius of 0.375 m, a length of 3011.25 m and a wall thickness of 0.01 m. The characteristic scales of
the system are l = 15 m and ω = 100 sec−1. The profile shape is specified by the function

y(x) =
4

1 + 0.0025(x− 100)2
,

where x and y are measured in l. The shape of pressure oscillations at the entrance is specified by

F0(τ) = P0

(
1− cos

(
2π

ω0

ω
τ
))
,

where P0 is the constant amplitude of the signal.
The calculations show that in the zeroth approximation for ε, a pressure pulse is formed at a certain

distance from the entrance (Fig. 2). Such a pulse was obtained in [1] and numerically determined in [15] but
for different boundary conditions. The pulse height is equal to the oscillation amplitude P0, i.e., the mean
value of the pressure at the entrance.

In the first approximation for ε, the pressure is given by formulas (13). The quantities w(1) and w(2)

are obtained from Eqs. (6)–(8) of [12], which are solved using three-layer finite-difference schemes.
It is shown that the main contribution to the pressure of the first approximation p(1) comes from the

term
p(1) ≈ 2rv0

a2
fvs0,

as in the steady case [see (11)]. The physical meaning of this quantity and p
(1)
0 is the pressure difference on

the length equal to the pipe diameter. The functions p(1)(t) for various values of ζ are shown in Fig. 3.
The calculation results for the displacement of the pipe wall and the fluid pressure in the zeroth

approximation show good agreement between the mathematical model and known results.
Thus, formulas (4), (9), (10), (12), and (13) can be used to describe the motion of the system. In

particular, one can obtain the dependence of the shape of pressure oscillations on the curvature of the
pipeline axis. This dependence can be employed to design a system for controlling distortions of the pipeline
profile.

The authors are grateful to V. P. Myasnikov for the formulation of the problem and valuable discussions.
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98–01–
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